

Analytic continuation over complex landscapes

Jaron Kent-Dobias \& Jorge Kurchan

16 March 2022

Introduction

Why analytic continuation?

- Formally define a formally undefined theory. . .
- Calculate something in an oscillatory theory...
... by continuing from a well-defined and nonoscillatory region.

Tiny outline

1. How to continue phase space integrals
2. The structure of complex phase space in 'complex' theories

Chiara Cammarota via Simons Glass Collaboration
3. Implications for continuation

3-spin spherical model: N-component 'spin' s with

$$
\mathcal{S}(s)=\frac{1}{3!} \sum_{i, j, k}^{N} J_{i j k} s_{i} s_{j} s_{k} \quad N=s^{2}=(\operatorname{Re} s)^{2}-(\operatorname{lm} s)^{2}
$$

"Circular model" with $N=2$, parameterized by $\theta=\arctan \left(s_{2} / s_{1}\right)$

$$
Z \quad=\int_{S^{N-1}} d s e^{-\beta \mathcal{S}(s)}
$$

$$
=\oint_{\mathcal{C}} d s e^{-\beta \mathcal{S}(s)}
$$

$$
=\sum_{\sigma} n_{\sigma} \oint_{\mathcal{J}_{\sigma}} d s e^{-\beta \mathcal{S}(s)}
$$

$$
\begin{gathered}
Z=\sum_{\sigma} n_{\sigma} \oint_{\mathcal{J}_{\sigma}} d s e^{-\beta \mathcal{S}(s)} \\
\mathcal{C}=\mathcal{J}+\mathcal{J}+\mathcal{J} \bullet
\end{gathered}
$$

Thimble \mathcal{J}_{σ} : set of all points that approach the stationary point σ under gradient descent on $\operatorname{Re} \beta \mathcal{S}$

- are surfaces of constant phase
- connect good regions where the integrand vanishes
- form a basis for valid contours

$$
\begin{gathered}
Z=\sum_{\sigma} n_{\sigma} \oint_{\mathcal{J}_{\sigma}} d s e^{-\beta \mathcal{S}(s)} \\
\mathcal{C}=\mathcal{J}_{\bullet}+\mathcal{J}_{\bullet}+\mathcal{J}_{\bullet}
\end{gathered}
$$

Thimble \mathcal{J}_{σ} : set of all points that approach the stationary point σ under gradient descent on $\operatorname{Re} \beta \mathcal{S}$

- are surfaces of constant phase
- connect good regions where the integrand vanishes
- form a basis for valid contours

Smooth continuation of parameters like β mostly doesn't change thimble decomposition, but sometimes does at Stokes points.

$\mathcal{C}=\mathcal{J}_{\bullet}+\mathcal{J}_{\bullet}+\mathcal{J}_{\bullet}$

$$
\mathcal{C}=? ? ?
$$

$$
\mathcal{C}=\mathcal{J}+\mathcal{J} \mathbf{\Delta}+\mathcal{J} \bullet \mathcal{J}_{\bullet}
$$

Complex landscapes have a superextensive number of stationary points: $\mathcal{N} \sim e^{N \Sigma}$

Chiara Cammarota via Simons Glass Collaboration

Relative position of nearest-neighbor stationary points in the landscape shapes the propensity for Stokes points

Summary

- Analytic continuation of exponential integrals relies on decomposition into thimbles attached to stationary points
- 'Complex' landscapes with many stationary points have even more in their complex extensions
- Relative position of nearby stationary points in complex phase space changes dramatically at the 'threshold'

Complex complex landscapes, JK-D \& J Kurchan, PRR 3023064 (2021) \& forthcoming. . .

Bonus: Thimble orientation and the weights n_{σ}

$$
\mathcal{C}=\mathcal{J} \bullet-\mathcal{J}
$$

$\mathcal{C}=\mathcal{J}_{\bullet}$
$\mathcal{C}=\mathcal{J}_{\bullet}+\mathcal{J}_{\boldsymbol{v}}$

Bonus: Threshold energy in the complex phase space

$|\epsilon|=0$

$|\epsilon|<\left|\epsilon_{\text {gap }}\right|$

$|\epsilon|=\left|\epsilon_{\text {gap }}\right|$

$|\epsilon|>\left|\epsilon_{\text {gap }}\right|$

