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Figure 1: A simple action and its stationary points. Left: Phase space of the N = 2 spherical (or circular) model, defined for s ∈ RN

restricted to the circle N = s2. It can be parameterized by one angle θ = arctan(s2/s1). Its natural complex extension takes instead s ∈ CN

restricted to the hyperbola N = s2 = (Re s)2− (Im s)2. The (now complex) angle θ is still a good parameterization of phase space. Center:
A 3-spin action S. The minimum and maximum are marked with ◆ and ▼, respectively. Right: The stationary points of the action in the
complex-θ plane. The set of all stationary points is Π = {◆, ★, ▲, ▼, ●, ■}, and N = 6 is the number of stationary points.
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Figure 2: The complex phase space for the circular p-spin model and its standard integration contour. This figure shows the equivalence
of the partition function integrals

Z =
∫

SN−1
ds e−βS(s) =

∮
C

ds e−βS(s) =
∮
C′

ds e−βS(s) =
∑
σ∈Π

nσ

∮
Jσ

ds e−βS(s) (1)

Left: The phase space integral for the spherical model is equivalent to a contour integral over the contour C = SN−1. Center: Complex
analysis implies that the contour can be freely deformed into C ′ without changing the value of the integral. Right: A funny deformation in
which pieces have been pinched off to infinity, making the contour a composition of several disconnected “thimble” contours Jσ. So long
as no poles have been crossed, even this is legal.
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Figure 3: Rules for thimble homology. Left: Each stationary point has a thimble, defined by the set of all points which flow into it under
gradient descent on Re βS. Thimbles have nice properties as integration contours: they are surfaces of constant phase, they connect
good regions of complex phase space where the integrand vanishes (highlighted in gray), and they form a basis for all contours that
connect good regions. Here, C = J◆ + J▼ + J● (the highlighted contour) is homologically equivalent to integration around the circle.
Right: The antithimbles are defined by all points which flow into the stationary point under gradient ascent. Stationary points whose
thimbles are involved in the contour have antithimbles that intersect the original contour, the real line.
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Figure 4: As β (or any another parameter) is continuously varied, the decomposition of the contour into thimbles usually doesn’t change.
At Stokes points, where two thimbles intersect each other, the contour can suddenly jump. Left: The collection of thimbles necessary to
progress around the circle from left to right is the same as it was above. Center: The thimble J◆ intersects the stationary point ▲ and
its thimble, making the decomposition of the contour into thimbles poorly defined. This is a Stokes point. Right: The Stokes point has
passed, and the collection of thimbles necessary to produce the path has suddenly changed: now C = J◆ + J▲ + J▼ + J●.
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Figure 5: Spectra of the 3-spin spherical model at stationary points with fixed (Im s)2 > 0 and various energies. The insets show the
spectrum of eigenvalues of the hessian HessS, which is constant inside an ellipse in the complex plane and zero elsewhere. The plots
show the spectrum of singular values of the hessian, which correspond to eigenvalues of the real part of the hessian, relevant for the
thimbles. The energies all have the same complex argument and varying complex magnitude. Left: |ϵ| = 0. Center right: |ϵ| < |ϵgap|.
Center left: |ϵ| = |ϵgap|. The boundary of the ellipse intersects the origin, and the singular value spectrum develops a pseudogap. Right:
|ϵ| > |ϵgap|.
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Figure 6: What happens to analytic continuation when the action has a superextensive number of stationary points N ∼ eNΣ for large
N? First, we examine where the stationary points are in complex phase space. Plots show the complexity Σ of the 3-spin spherical
model as a function of energy ϵ = S/N and Y = (Im s)2, the distance into imaginary configuration space. The thick black lines are at zero
complexity, the boundary at which stationary points become extremely rare. Left: For purely real energy. Right: For purely imaginary
energy.
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Figure 7: The complexity of the 3-spin spherical model, as in Fig. 5, focused on the lower left. The shaded area shows the region where
the spectrum of stationary points is ungapped, whose boundary approaches the threshold energy ϵth as Y = Im s → 0. The ϵk show
the energies at which stationary points with fixed index k vanish in the purely real case: ϵk=0 is the ground state energy, and ϵk=1 is the
lowest energy with rank-1 saddles. Below ϵth the limit Im s → 0 does not approach the real complexity: complex stationary points in close
vicinity to the real plane vanish at ϵk=1, not at ϵk=0 where real stationary points vanish.
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Figure 8: We expect that the stationary points liable to intersect in Stokes points tend to be nearest neighbors. What is the character
of these nearest neighbors? Left: The “two replica” complexity reveals the population of stationary points like ◆ in the complex plane
nearest a given real point ●, as a function of their separation |∆smin| and angle φ made with the real plane. Right: Properties of the
nearest neighbors as a function of energy. For energies above ϵk=1 there are complex saddles at arbitrarily close distance, while below
there is a minimum distance between neighboring saddles. Above ϵth, the nearest points are broadly distributed at all angles, with the
dominant population at 45◦. At the threshold the dominant population abruptly shifts to lie at 90◦. Below ϵk=2 neighbors are only found
at 90◦, and below ϵk=1 the angle drifts as the distance between neighbors becomes nonzero. The relative position of nearest stationary
points roughly bounds the extent to which analytic continuation can be easily performed.
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Figure 9: Application of analytic continuation in the Left: 2-spin and Right: 3-spin spherical models. Solid lines show phases of the
models in the complex-β plane derived by Obuchi & Takahashi (2012). In the P2 phase there is a nonzero density of zeros in the partition
function, while in the P1 and spin glass (SG) phases there are not. Analytic continuation can be used to derive all of these boundaries in
the 2-spin case, and for the 3-spin to derive the P2–SG phase boundary in the |β| ≫ 1 limit, shown with a dashed line. First, the thimble
decomposition is made in the vicinity of real β. Second, the contribution of each thimble is expanded to leading order in |β|. At this order,
its value depends only on the energy and hessian at each stationary point. Finally, the sum over stationary points is approximated as
an integral over stationary point energies weighted by the complexity, and this integral is evaluated using a saddle point. The P2–SG
boundary corresponds to the place where the this integral is no longer concentrated in the ground state, and oscillations due to complex
thimble contributions at other energies give an incoherent sum. For the 2-spin model, the P1–P2 boundary corresponds to the place
where, when approached from the P2 side, the oscillation period diverges and a coherent sum is regained. This divergence does not
predict the correct boundary in the 3-spin case, likely as a result of Stokes points which make the thimble decomposition near real β
increasingly invalid further into the complex plane.


