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Abrupt, or first-order, phase transitions are characterized by kinks in the
free energy at the transition, which lead to discontinuities in certain thermody-
namic quantities [11]. With the appropriate tuning, systems with abrupt phase
transitions can be brought into a regime where the phase on neither side of the
transition is stable, and the two phases coexist in finite domains. This coex-
istence is usually imagined as involving finite domains which are compact in
space; after all, most of our statistical models involve local interactions, which
means it is compact spatial regions whose potential for correlation is strongest.
However, this is not a rule. We will see through some examples (and previ-
ous results) how phase coexistence can arise and make sense in systems whose
interactions are nonlocal and disordered.

Consider the Hamiltonian defined for Q 2 SO(n) by

H(Q) = �pn
nX
i=1

nX
j=1

jQij j (1)

This model may seem trivial and uncoupled, but it is not; the requirement that
Q be orthogonal restricts the n�nmatrix elements to a 1

2n�(n�1) dimensional
manifold. To see this, take an analogous model, where Q 2 Sn. In spherical
coordinates, the Hamiltonian is

H(Q) = �pn�j sin�1 � � � sin�nj+ j cos�1j
+ j sin�1 cos�2j+ � � �+ j sin�1 � � � sin�n�1 cos�nj

	
which is coupled in a complex way. Unfortunately, there is no closed-form
parameterization of SO(n), so an explicit expression for the Hamiltonian like
that for the n-sphere is not possible [12].

One can run metropolis simulations on a Lie group G by forming an orthog-
onal basis feig of its Lie algebra g and then mapping that basis to near-identity
elements of the Lie group using the exponential map. For an element X 2 g,
exp(�X) for some small value � is a linear transformation which shifts an element
g 2 G by a small step. For the orthogonal group, g is the set of skew-symmetric
matrices. Choosing as a basis of g matrices with Aij = 1, Aji = �1 for some
i 6= j and Akl = 0 otherwise, the resulting transformation exp(�A) is simply a
Givens rotation in the plane i–j. In the course of this question, we will also be
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Figure 1: Top Left: The normalized expectation value of the Hamiltonian (1)
for Q 2 SO(n) and n = 12, 16, and 20 as a function of inverse temperature �.
Bottom Left: The distribution of matrix elements evaluated at Qij = 0. Top
Right: The expectation value of the Hamiltonian for n = 12; 13. Bottom Right:
The expectation value of the Hamiltonian for n = 18; 20.
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investigating transitions in other Lie groups—namely, the special unitary group
SO(n) and the compact symplectic group1 Sp(n). For the unitary group, the al-
gebra is composed of skew-Hermitian matrices, and for the compact symplectic
group it is composed of quaternionic skew-Hermitian matrices.

The model (1) is interesting because, when simulated as described above,
it undergoes an abrupt phase transition. This is evidenced in Fig. 1, which
shows a discontinuity in the expectation value of the Hamiltonian as a function
of inverse temperature. It has been suggested that an order parameter for this
transition is the probability density � of value of the elements Qij evaluated at
Qij = 0 [3]. This is shown in Fig. 1 as well. Notice that, as n is increased,
the transition becomes both more abrupt and decreases in temperature. This
can be accounted for if the entropy and energy change of the ordered phase
are non-extensive. For some values of n, this model’s ground state consists of
real Hadamard matrices, or Q 2 SO(n) for which jQij j = 1=

p
n for all i; j.

Hadamard matrices can only exist for n = 1; 2 and n that are multiples of 4,
and in those dimensions there are usually many such matrices [6]. For instance,
in n = 16 there are four Hadamard matrices inequivalent under transposition,
negating rows or columns, or exchanging rows or columns, and with those opera-
tions many can be generated. However, there need not exist Hadamard matrices
for a given n for this transition to exist. The upper right of Fig. 1 shows the
transition in a system with n = 13, for which Hadamard matrices certainly do
not exist, and indeed we found in numerics that this transition occurs for every
n. For non-Hadamard n, the discontinuity is not as large, since the ground state
cannot be as low-energy, and the transition temperature is often shifted dra-
matically from that for Hadamard-n nearby. See, for instance, the comparison
of n = 18 and n = 20 in the bottom right of Fig. 1.

Does this transition occur in analogous systems? The Hamiltonian (1) for
Q 2 SU(n) or Q 2 Sp(n) does not exhibit this transition, as seen at the top of
Fig. 2. However, the Hamiltonian

H(Q) = �pn
nX
i=1

nX
j=1

�j<(Qij)j+ j=(Qij)j
	

(2)

(and its natural extension for quanterions) for these same groups does exhibit
the transition, shown at the bottom of Fig. 2. In the former case, Hadamard
matrices still comprise the group state, but those matrices are now complex (or
qaternion) and equivalent Hadamard matrices form continuous surfaces con-
nected by shifting phase. The fact this transition does not exist for those sys-
tems but does for (2) suggests that the discrete, disconnected nature of the
ground states is important. This transition also does not happen for Q 2 Sn

(Fig. 3), which may be surprising, as for all n this model has many disconnected
ground states: f� 1p

n
; : : : ;� 1p

n
g for all combinations of �.

1The compact symplectic group, which is isomorphic to U(2n) \ Sp(2n;C) (unitary sym-
plectic matrices of dimension 2n), is also U(n;H), or the quaternionic unitary group of di-
mension n.
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Figure 2: Top Left: The expectation value of (1) on the space SO(n). Top
Right: The expectation value of (1) on the space Sp(n). Bottom Left: The
expectation value of (2) on the space SO(n). Bottom Right: The expectation
value of (2) on the space Sp(n).
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Figure 3: Expectation value of (1) on the space Sn.
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What is going on here? We put forth the following conjecture: the model (1)
for Q 2 SO(n) can be thought of as a model of n

2 (where integer division is used)
two-component spins with annealed disordered couplings. The spins undergo
an abrupt paramagnetic–spin-glass transition. The non-extensive nature of the
energy and entropy in the transition is explained by the fact that there are only
n
2 spins which transition compared to 1

2n(n� 1) coupling degrees of freedom.
How does this conjecture take shape? In the theory of Lie groups, a torus

in a compact Lie group G is a compact, connected, abelian Lie subgroup of G
[13]. Since the only compact, connected, abelian Lie group of dimension n is
Tn = S1 � � � � � S1, such a subgroup is isomorphic to the torus. A maximal
torus of a Lie group is the torus in that Lie group of highest dimension. For
SO(n), the only maximal torus is dimension n

2 and corresponds to the subgroup
of the form2

64
R1 0

. . .
0 Rn=2

3
75

where the Ri are two-dimensional rotation matrices. In the case of odd n, the
subspace is orthogonal to2

6664
R1 0

. . .
0 Rn=2

1

3
7775

Any member of a Lie group G can be decomposed into the form PJP�1, where J
acts on orthogonal directions along the maximal torus and P 2 G. In particular,
this is true for orthogonal matrices: for anyQ 2 SO(n), we can writeQ = PJPT

with P 2 SO(n) and

J =

2
64
s1 0

. . .
0 sn=2

3
75

for

Si =

�
sxi s

y
i

�syi sxi

�

We have chose notation for the 2 � 2 matrices along the diagonal of J which
is purposely provocative: such rotation matrices encode the value of a two-
component spin si. In this notation, the elements of the original matrix Q are
given by

Qij =

n=2X
k=1

h�
Pi(2k)Pj(2k) + Pi(2k+1)Pj(2k+1)

�
sxk

+
�
Pi(2k+1)Pj(2k) � Pi(2k)Pj(2k+1)

�
s
y
k

i
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Figure 4: The energy landscape for the spin component Sx
0 with n = 20 when

all other spins are fixed at random orientations.

and the effect of the Hamiltonian (1) is to couple the spins in nontrivial ways.
The energy landscape of one spin with others fixed and P 2 SO(20) chosen
randomly is shown in Fig 4.

When P = I, this is simply a model of uncoupled spins. For fixed P 2

disorder is quenched. In this case, a paramagnetic–spin glass transition happens
(Fig. 5). For most random P , this transition does not exhibit a significant
discontinuity in the expectation value of the Hamiltonian, but does have a
discontinuity in the expectation value hsxi i and hsyi i from zero in the high-
temperature phase to nonzero values which depend on the particular ground
state in the low temperature phase. When P is taken from PJP T = H where
H is Hadamard, the discontinuity becomes visible in the energy again (also
Fig. 5). This is presumably because, for fixed random P , the ground state well
is not very deep, while for Hadamard-derived P it is much more significant.

We can confirm more formally that this is indeed a spin-glass transition by
simulating replicas of our model at various fixed random P and measuring the
spin-glass order parameter

q = 2
n

n=2X
i=1

s�i � s�i

where the replica index � = 1; : : :m [1, 9]. Simulations suggest that the model
does indeed undergo a paramagnetic–spin-glass transition that breaks replica
symmetry, as seen in Fig. 6, though the simulations were only started on Sat-
urday and haven’t yet made it all the way through the transition as of this
writing.

When we allow P to vary (as is done in the original model), disorder is
annealed. Simulating this case also results in a transition, as evidenced in Fig. 7.
The discontinuity in energy persists, and is in fact broken into small jumps

2Which we can randomly generate by taking a sufficiently long random walk to approach
the Harr measure of SO(n) [10].
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Figure 5: Top left: The expected value of the spin component sy as a func-
tion of � for quenched disorder with random P . Bottom left: The expected
value of the Hamiltonian for quenched disorder with random P . Top right:
The expected value of the spin component sx for quenched disorder with P
from a Hadamard decomposition. Bottom right: The expected value of the
Hamiltonian for quenched disorder with P from a Hadamard decomposition.
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Figure 6: (Note: this simulation hasn’t made it all the way through the transi-
tion yet. I only had this idea a week ago!) Left: The expectation value of the
replica symmetry breaking order parameter for n = 16 and various numbers of
replicas m. Right: The expectation of the Hamiltonian averaged over replicas.
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Figure 7: Left: The expectation value of a spin component with annealed disor-
der. Right: The expectation value of the Hamiltonian with annealed disorder.

which correspond with jumps in the expectation value of the spin—presumably
the energies of metastable states the simulation is found in before reaching the
ground state. Notice also that the transition temperature is shifted from the
original case. This can be explained by the form of the metropolis algorithm
used here: taking a step in spin space is just as likely as taking a step in disorder
space, while taking a step in spin space in the original model is disfavored. This
change in step preference affects the entropy of spins relative to disorder. The
shift in the transition temperature with n also vanishes for the same reason:
the number of free variables is simply n

2 , not n
2 as before.

The final test of this principle is to return to our original model and investi-
gate whether the expectation value of the spins as defined by the positions along
the maximal torus undergo the transition we’ve discussed. In our metropolis
simulation we implemented an efficient solver for the decomposition detailed
above by modifying the result of the gsl Schur decomposition of Q 2 SO(n)
[5]. The results of those simulations are shown in Fig. 8. As can be seen, the
transition corresponds to a discontinuity in the expectation value of spin com-
ponents. Also shown in that figure are the distribution of spin components for
n = 16 at various temperatures. The distribution stays nearly identical to its
� = 0 infinite temperature form until � � 5, at which point it changes rapidly
to the red curve before � reaches 7, where it remains stable in a ground state
which is notably not Hadamard (for which all spins have sx = �1).

What of the fact of phase coexistence in this system? Phase coexistence
in infinite-range spin-glasses has been recognized since the 1980s [4] and was
discovered in another spin-glass model more recently [2]. Many experimental-
ists have also found evidence of spin-glass and ferro- or paramagnetic ordering
coexisting [8, 7, 14]. In no case do the authors share any thought on the nature
of the coexistence they discover in their infinite-range theory, just that it is
present. One can speculate, however, that it occurs in the same way it does in
the case of local interactions, but the phase domains no longer have a relation
to spatial position of spins, and instead correspond to collections of components
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Figure 8: Results of simulating the original model and decomposing each step
into spins and couplings. Top Left: The distribution of sx for n = 16 at various
� (shown by coloration). Top Right: The distribution of sy for n = 16 at various
�. Bottom Left: The expectation value of sx. Bottom Right: The expectation
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which happen to be coupled strongly. One could imagine embedding a nonlo-
cal system in sufficiently many spatial dimensions so that the strength of its
couplings is related in a monotonic way to the distance between the elements
coupled; in this high-dimension embedding, the low-dimensional nonlocal sys-
tem would have spatially segregated phases and behave as a high-dimensional
local system.

In any case, we have at least reduced the problem of a first-order transi-
tion in this model of orthogonal matrices to that of first-order transitions in
spin-glasses. In the process, we have reduced the matrix model to that of two-
component spins coupled with annealed disorder, and have demonstrated how
such a reduction can be done for any compact Lie group. The resulting spin
model undergoes a paramagnetic–spin-glass transition for various forms of dis-
order and for any n.
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