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Optimization seeks extremal points in a function. When there are superex-tensively many optima, optimization algorithms are liable to get stuck. Un-der these conditions, generic algorithms tend to find marginal optima, whichhave many nearly flat directions. We introduce a technique to count marginaloptima in arbitrary settings, and use it to effectively bound the range of end-points for generic algorithms. We demonstrate the idea using a simple non-Gaussian problem: random nonlinear least most squares.
Conditioning on the maximum eigenvalue
An arbitrary function of the maximum eigenvalue of a matrix A can be written

g (λmax(A)) = lim
β→∞

∫
ds δ (N − sTs)eβsTAs∫
ds′ δ (N − s′Ts′)eβs′TAs′

g

(
sTAs
N

) (1)
since the measure concentrates on the eigenspace associated with λmax(A).As an example, let A = B − µI for GOE B with B2 = σ2/N . Consider the large-deviation function for the probability that λmax(A) = λ∗

eNGλ∗(µ) = P (λmax(A) = λ∗) = δ
(
N × (λmax(A) − λ∗)

) (2)
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The result for λ∗ = 0 above shows three regimes:•when the shift µ is such that the bulk spectrum lies over zero, which re-quires an N 2 large deviation and G0(µ) becomes imaginary
•when the shift µ is such that the bulk spectrum is pseudogapped
•when the shift µ is such that the bulk spectrum is strictly negative, andan isolated eigenvalue is pulled from the spectrum

Conditioning on a pseudogap
Marginal optimal do not simply have a zero eigenvalue; they have a pseu-dogap. Above, we see that the presence of the pseudogap is characterizedby the breakdown of the order-N large-deviation function. In general, onecan tune to a pseudogap by starting with sufficiently small µ and increasingit until the solution develops an imaginary component.

In the isotropic examples studied here, there is an easier way. In anisotropic landscape (zero signal to noise), typical spectra do not have anisolated eigenvalue. Therefore, it is always a large deviation with respect toa purely bulk spectrum. We can therefore identify the pseudogap shift µ = µmby solving
0 =

∂

∂λ∗
Gλ∗(µm)

����
λ∗=0

(3)
which indeed gives µm = 2σ for the shifted GOE case.
Marginal complexity
Consider an optimization problem over functions H defined on a configura-tion space itself defined by a set of constraints g(x) = 0. Introducing a vector
ωωω of Lagrange multipliers for the constraints, the gradient and Hessian are

+H (x,ωωω) = ∂H (x) + ωi∂gi (x) HessH (x,ωωω) = ∂∂H (x) + ωi∂∂gi (x) (4)
Optima with energy E , shift µ, and maximum eigenvalue λ∗ can be countedby integrating the Kac–Rice measure
dν (x,ωωω | E , µ, λ∗) = dx dωωω δ

(
+H (x,ωωω)

)
δ
(
g(x)

) ��detHessH (x,ωωω)
��

× δ
(
NE − H (x)

)
δ
(
Nµ + TrHessH (x)

)
δ
(
Nλ∗ − Nλmax(HessH (x))

)
(5)The complexity is the average logarithm of the count, or

Σλ∗(E , µ) =
1

N
log

∫
dν (x,ωωω | E , µ, λ∗) (6)

For each energy E , we can find the marginal shift µm(E ) by again requiringthat
0 =

∂

∂λ∗
Σλ∗

(
E , µm(E )

) ����
λ∗=0

(7)
yielding the marginal complexity Σm(E ) = Σ0(E , µm(E )).

Random nonlinear least most squares

A simple non-Gaussian landscape is the sum of squared Gaussian functions
H (x) = 1

2

αN∑
k=1

Vk (x)2 V (x) = 0 Vi (x)Vj (x′) = δi j f

(
xTx′
N

) (8)
on a spherical configuration space 0 = g (x) = N − xTx with x ∈ ÒN . Mini-mizing H is a model of random nonlinear least squares. However, the bot-tom of the landscape is more complicated than the top: the bottom tendsto be either replica symmetric or full RSB, while the top reflects the orderof whatever spherical spin-glass is associated with individual functions V .
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V V( ( )²)x x

Therefore, to keep the example simple, we will consider the problem of max-imizing H , or nonlinear most squares, which for many natural choices of f hasa replica-symmetric complexity of optima.
An example of the complexy is below. The techniques we use can onlycount minima or maxima in these models, so the dominant complexity is onlycomputed up to the threshold energy Eth where saddle points become mostcommon.
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We compare the range of marginal optima to the endpoints of gradient de-scent and message passing optimization algorithms for a range of models.The results are effectively bounded by the range of marginal optima, thoughthe bound is not always tight.
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It appears that the energy at which the majority of marginal optima are lo-cated Emaj may be a useful lower bound on the performance of gradient de-scent. However, there is no principled reason for this, and the empirical ev-idence is limited to a small subclass of models right now.


